个人简介:
黄维,女,校特聘副研究员,2023年加入福建省网络计算与智能信息处理重点实验室。研究兴趣包括多模态数据融合与分析、分布式机器学习(联邦学习)、城市计算(包括危险驾驶行为检测、交通流量预测、推荐系统应用、空气质量预测等)、知识图谱、多媒体处理技术(图像/视频取证技术)、信息安全等。曾在IEEE Transaction on Knowledge and Data Engineering, ACM Transactions on Knowledge Discovery from Data, IEEE Transactions on Cybernetics, IEEE Transactions on Big Data, Information Fusion,Information Sciences, Pattern Recognition等国际期刊上发表关于联邦学习、深度学习、知识图谱、城市计算等相关领域研究论文,申请并授权发明专利多项。在数据挖掘、大数据分析、人工智能、联邦学习、深度学习、知识图谱、数据融合与城市计算应用等领域积累了丰富的研究经验和相关成果。担任2023 The 18th International Conference on Intelligent Systems and Knowledge Engineering(ISKE2023)程序委员会主席,担任多个期刊的特邀审稿人。
教育背景如下:
2019.09-2023.06 西南交通大学,计算机科学与技术,博士
2016.09-2019.06 福建师范大学,软件工程,硕士
智能计算与信息安全处理实验室
*****目前实验室正在招收硕士生(还有名额)*****
目前硕士招生专业:计算机科学与技术、软件工程、大数据、人工智能等方向。
欢迎勤奋好学,具有良好编程能力和英语能力,对多模态数据融合与分析、分布式机器学习(联邦学习)、城市计算(包括危险驾驶行为检测、交通流量预测、推荐系统应用、空气质量预测等)、知识图谱、多媒体处理技术(图像/视频取证技术)、信息安全等感兴趣,欢迎通过邮件与我联系。期待你们的加入!
*****实验室也非常欢迎有潜力的本科生(名额不限)*****
如果你们是对相关研究感兴趣的本科生,也欢迎通过邮件与我联系,参与我们的学术科研。期待你们的加入!
办公地址:计算机与大数据学院4号楼125
联系邮箱:huangweifujian@126.com
科研项目:
1、国家自然基金青年项目:面向城市时空任务的联邦学习模型研究,2025-2027,主持
2、国家重点研发计划项目:国家中心城市数据管控与知识萃取技术和系统应用, 2019-2022, 参与
3、国家自然科学基金面上项目:面向城市时空大数据的深度协同融合与跨域联邦学习技术研究, 2022-2025,参与
4、国家自然科学基金面上项目:面向城市大数据的深度学习模型与方法研究 , 2018-2021,参与
科研成果:
[1] Wei Huang, Dexian Wang, Xiaocao Ouyang, Jihong Wan, Jia Liu, Tianrui Li: Multimodal federated learning: Concept, methods, applications and future directions. Information Fusion, 112: 102576 (2024). (中科院一区Top期刊)
[2] Jia Liu, Nijing Yang, Yan-Li Lee, Wei Huang(通讯作者), Yajun Du, Tianrui Li, Pengfei Zhang: FedDAF: Federated deep attention fusion for dangerous driving behavior detection.Information Fusion, 112: 102584 (2024). (中科院一区Top期刊)
[3] Xiaocao Ouyang, Yan Yang, Wei Zhou, Yiling Zhang, Hao Wang, Wei Huang: CityTrans: Domain-Adversarial Training With Knowledge Transfer for Spatio-Temporal Prediction Across Cities. IEEE Transactions on Knowledge and Data Engineering. 36(1): 62-76 (2024). (CCF A期刊)
[4] Wei Huang, Jia Liu, Tianrui Li, Tianqiang Huang, Shenggong Ji, Jihong Wan. FedDS: Daily schedule recommendation in a federated deep reinforcement learning framework[J]. IEEE Transactions on Knowledge and Data Engineering, 2023,35(4): 3912-3924. (CCF A期刊)
[5] Wei Huang, Tianrui Li, Jia Liu, Peng Xie, Shengdong Du, Fei Teng. An overview of air quality analysis by big data techniques: Monitoring, forecasting, and traceability[J]. Information Fusion, 75(2021):28-40. (中科院一区Top期刊)
[6] Wei Huang, Tianrui Li, Dexian Wang, Shengdong Du, Junbo Zhang, Tianqiang Huang. Fairness and accuracy in horizontal federated learning[J]. Information Sciences, 2022(589): 170-185. (中科院一区Top期刊)
[7] Wei Huang, Jia Liu, Tianrui Li, Shenggong Ji, Dexian Wang, Tianqiang Huang. FedCKE: Cross-domain knowledge graph embedding in federated learning[J]. IEEE Transactions on Big Data, 2022. (中科院二区期刊)
[8] Wei Huang, Lingpeng Lin, Tianqiang Huang, Jing Lin, Xueli Zhang. Scale-adaptive tracking based on perceptual hash and correlation filter[J]. Multimedia Tools and Applications, 2019, 78(12): 16011-16032.(中科院四区期刊)
[9] Jia Liu, Wei Huang(共同一作), Hao Li , Shenggong Ji Yajun Du. SLAFusion: Attention fusion based on SAX and LSTM for dangerous driving behavior detection[J]. Information Sciences, 2023. (中科院一区Top期刊)
[10] Jia Liu, Wei Huang , Tianrui Li, Shenggong Ji. Cross-domain knowledge graph chiasmal embedding for multi-domain item-item recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023.(CCF A期刊)
[11] Al-Huthaifi Rasha, Tianrui Li, Wei Huang, Jin Gu, Chongshou Li. Federated Learning in Smart Cities: Privacy and Security Survey[J]. Information Sciences, 2023. (中科院一区Top期刊)
[12] Jia Liu, Tianrui Li, Zhong Yuan, Wei Huang, Peng Xie, Qianqian Huang. Symbolicaggregate approximation based data fusion model for dangerous driving behavior detection[J]. Information Sciences, 2022(609):626-643. (中科院一区Top期刊)
[13] Jihong Wan, Hongmei Chen, Tianrui Li, Jia Liu, Wei Huang. Interactive and Complementary Feature Selection via Fuzzy Multi-granularity Uncertainty Measures[J]. IEEE Transactions on Cybernetics, 2021(10): 1-14. (中科院一区Top期刊)
[14] Jihong Wan, Hongmei Chen, Tianrui Li, Wei Huang, Min Li, Chuan Luo. R2CI: Information theoretic-guided feature selection with multiple correlations[J]. Pattern Recognition, 2022, 127: 108603.(中科院一区Top期刊)
[15] Dexian Wang, Tianrui Li, Ping Deng, Fan Zhang, Wei Huang, Pengfei Zhang, Jia Liu. A Generalized Deep Learning Clustering Algorithm Based on Non-Negative Matrix Factorization [J]. ACM Transactions on Knowledge Discovery from Data , 2023. (CCF B类期刊)
[16] Dexian Wang, Tianrui Li, Ping Deng, Jia Liu, Wei Huang, Fan Zhang. A Generalized Deep Learning Algorithm based on NMF for Multi-view Clustering[J]. IEEE Transactions on Big Data, 2022.(中科院二区)
[17] Tianqiang Huang, Xueli Zhang, Wei Huang, Lingpeng Lin, Weifeng Su. A multi-channel approach through fusion of audio for detecting video inter-frame forgery[J]. Computers & Security, 2018, 77: 412-426.(CCF B类期刊)
[18] Lingpeng Lin, Tianqiang Huang, Wei Huang, Han Pu, Peng Shi. Low rank theory-based interframe forgery detection for blurry video[J]. Journal of Electronic Imaging, 2019, 28(6): 063010.