陈哲毅,男,中共党员,博士,研究员,校聘教授,博士生导师。现任福州大学计算机与大数据学院院长助理、软件工程系主任、福建省网络计算与智能信息处理重点实验室副主任,兼任CCF YOCSEF福州副主席、CCF福州执委。入选福建省“雏鹰计划”青年拔尖人才、福建省高层次人才、福州大学旗山学者。主要研究方向包括云/边缘计算、资源优化、深度学习、强化学习等。主持包括国家自然科学基金青年项目、中央引导地方科技发展资金项目、省级教育教学研究项目(重大项目)等在内的6项国家与省部级项目以及3项横向项目,累积主持项目经费超过1000万元。以第一/通讯作者在IEEE TPDS、IEEE JSAC、IEEE TMC、IEEE/ACM TON、IEEE INFOCOM、ACM SIGKDD、IEEE TII、IEEE ComMag、IEEE IOTJ、FGCS、IEEE TCC、IEEE ICC等国内外知名期刊与会议上发表论文40余篇(CCF-A国际期刊/会议和中科院1区期刊论文10余篇),ESI热点论文2篇、ESI高被引论文4篇,谷歌学术引用1300余次,h指数和i10指数分别为16和19。以第一发明人申请/授权国家发明专利20余项、国际专利10余项,出版学术专著1部,发布团体标准1项。担任IEEE TPDS、IEEE TMC、IEEE TWC、IEEE TNNLS、IEEE TFS、COMPJ、IEEE TII、IEEE IOTJ、IEEE TCC、JGC、CN、IEEE/CAA JAS、TGCN、PPNA、IEEE HPCC、IEEE ISPA等国际知名期刊与会议审稿人,担任CIT’24等国际会议程序委员会主席、CMC等期刊编委、Mathematics等期刊客座编辑。入选全球前2%顶尖科学家榜单、国际学术组织ScienceFather青年科学家奖,获福建省科技进步一等奖1项、CCF技术发明二等奖1项、福建省自然科学优秀学术论文二等奖1项、福建省计算机学会学术年会优秀论文一等奖2项、福建省暑期“三下乡”社会实践活动省级先进工作者、福建省青年五四奖章集体等荣誉。获批福建省课程思政示范课程1项,指导学生获优秀毕业生1人次、国家奖学金4人次、SRTP国家级项目1项。
主讲课程:大数据与云计算、大数据与云计算实践、专家系列讲座、云计算与虚拟化技术分析
电子邮箱:z.chen@fzu.edu.cn
办公地点:计算机与大数据学院2号楼509
教育经历
1、博士:英国埃克塞特大学,计算机科学专业,2017/09~2021/10,导师:闵革勇教授
2、硕士:清华大学,计算机科学与技术专业,2014/09~2017/06,导师:武永卫教授
3、本科:山西大学,计算机科学与技术专业,2010/09~2014/07
工作经历
1、2023/02至今,福州大学,计算机与大数据学院,研究员
2、2022/09至今,福州大学,计算机与大数据学院,校聘教授
3、2021/12~2022/08,福州大学,计算机与大数据学院,校聘副研究员
科研项目
1、国家自然科学基金青年项目,62202103,云边协同环境下高效自适应的资源优化关键技术研究,2023/01~2025/12,30万元,在研,主持
2、福建省人力资源和社会保障厅,闽人社文〔2023〕142号,福建省第四批“雏鹰计划”青年拔尖人才,2023/12~2028/12,200万元,在研,主持
3、中央引导地方科技发展资金项目,2022L3004,云边协同环境下的资源优化及数据处理关键技术研究及应用,2022/08~2025/08,100万元,在研,主持
4、福建省本科高校教育教学研究项目(重大项目),FBJY20230049,面向“数字福建”战略的计算机类专业学位研究生培养的探索与实践,2023/09~2025/10,10万元,在研,主持
5、福州大学旗山学者科研项目,XRC-24066,基于机器学习的云边资源优化方法研究,2022/01~2025/12,30万元,在研,主持
6、欧盟地平线计划项目,101129910,Real-time Fine-grained Air Quality Monitoring with Intelligent and Robust Multi-UAV Networks,2024/01~2027/12,58.42万欧元,在研,参加
7、福建省财政厅科研项目,83021094,移动边缘计算资源分配关键技术研究,2021/12~2023/12,100万元,已结题,主持
8、福建省财政厅科研项目,83021084,大数据智能关键技术研发,2021/12~2023/12,80万元,已结题,主持
9、国家自然科学基金重点项目,61433008,大数据高效能存储与管理方法研究,2015/01~2019/12,395万元,已结题,参加
获奖经历
1、2021年度福建省科技进步一等奖
2、2024年度CCF技术发明二等奖
3、第十六届福建省自然科学优秀学术论文二等奖
4、2023年福建省计算机学会学术年会优秀论文一等奖
5、2021年福建省计算机学会学术年会优秀论文一等奖
6、2023年福建省暑期“三下乡”社会实践活动省级先进工作者
7、2022年福建省青年五四奖章集体
近年部分代表性论著
[1] Zheyi Chen, Jia Hu*, Geyong Min*, Albert Y. Zomaya, and Tarek El-Ghazawi. Towards Accurate Prediction for High-Dimensional and Highly-Variable Cloud Workloads with Deep Learning. IEEE Transactions on Parallel and Distributed Systems (TPDS), 31(4): 923-934, 2020.(CCF-A国际期刊)
[2] Zheyi Chen, Junjie Zhang, Geyong Min*, Zhaolong Ning*, and Jie Li. Traffic-aware Lightweight Hierarchical Offloading towards Adaptive Slicing-enabled SAGIN. IEEE Journal on Selected Areas in Communications (JSAC), 2024.(CCF-A国际期刊)
[3] Zheyi Chen, Bing Xiong, Xing Chen*, Geyong Min, and Jie Li. Joint Computation Offloading and Resource Allocation in Multi-edge Smart Communities with Personalized Federated Deep Reinforcement Learning. IEEE Transactions on Mobile Computing (TMC), 23(12): 11604-11619, 2024.(CCF-A国际期刊)
[4] Zheyi Chen, Jie Liang, Zhengxin Yu*, Hongju Cheng, Geyong Min*, and Jie Li. Resilient Collaborative Caching for Multi-edge Systems with Robust Federated Deep Learning. IEEE/ACM Transactions on Networking (TON), 2024.(CCF-A国际期刊)
[5] Zheyi Chen, Jia Hu*, Geyong Min*, Chunbo Luo, and Tarek El-Ghazawi. Adaptive and Efficient Resource Allocation in Cloud Datacenters Using Actor-Critic Deep Reinforcement Learning. IEEE Transactions on Parallel and Distributed Systems (TPDS), 33(8): 1911-1923, 2022.(CCF-A国际期刊)
[6] Luying Zhong, Yueyang Pi, Zheyi Chen*, Zhengxin Yu, Wang Miao, Xing Chen, and Geyong Min. SpreadFGL: Edge-Client Collaborative Federated Graph Learning with Adaptive Neighbor Generation. IEEE International Conference on Computer Communications (INFOCOM), 1141-1150, 2024.(CCF-A国际会议)
[7] Luying Zhong, Renjie Lin, JiayinLi, Shiping Wang, and Zheyi Chen*. Bridging and Compressing Feature and Semantic Spaces for Robust Graph Neural Networks: An Information Theory Perspective. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), 4571-4582, 2024.(CCF-A国际会议)
[8] Xing Chen, Shengxi Hu, Chujia Yu, Zheyi Chen*, and Geyong Min*. Real-Time Offloading for Dependent and Parallel Tasks in Cloud-Edge Environments Using Deep Reinforcement Learning. IEEE Transactions on Parallel and Distributed Systems (TPDS), 35(3): 391-404, 2024.(CCF-A国际期刊)
[9] Xing Chen, Jianshan Zhang, Bing Lin*, Zheyi Chen*, Katinka Wolter, and Geyong Min. Energy-Efficient Offloading for DNN-based Smart IoT Systems in Cloud-Edge Environments. IEEE Transactions on Parallel and Distributed Systems (TPDS), 33(3): 683-697, 2022.(CCF-A国际期刊,ESI热点/高被引)
[10] 陈星, 林兵, 陈哲毅. 面向云-边协同计算的资源管理技术. 清华大学出版社, 2023.07. ISBN: 9787302625551.
[11] Zheyi Chen* and Zhengxin Yu. Intelligent Offloading in Blockchain-Based Mobile Crowdsensing Using Deep Reinforcement Learning. IEEE Communications Magazine (ComMag), 61(6): 118-123, 2023.(中科院1区Top期刊)
[12] Zheyi Chen, Junjie Zhang, Xianghan Zheng*, Geyong Min*, Jie Li, and Chunming Rong. Profit-aware Cooperative Offloading in UAV-enabled MEC Systems Using Lightweight Deep Reinforcement Learning. IEEE Internet of Things Journal (IOTJ), 11(2): 21325-21336, 2024.(中科院1区Top期刊)
[13] Xing Chen, Junqin Hu, Zheyi Chen*, Bing Lin*, Naixue Xiong, and Geyong Min. A Reinforcement Learning Empowered Feedback Control System for Industrial Internet of Things. IEEE Transactions on Industrial Informatics (TII), 18(4): 2724-2733, 2022.(中科院1区Top期刊,ESI高被引)
[14] Zheyi Chen*, Junjie Zhang, Zhiqin Huang, Pengfei Wang, Zhengxin Yu, and Wang Miao. Computation Offloading in Blockchain-Enabled MCS Systems: A Scalable Deep Reinforcement Learning Approach. Future Generation Computer Systems (FGCS), 53: 301-311, 2024.(中科院1区Top期刊)
[15] Luying Zhong, Zheyi Chen*, Hongju Cheng*, and Jie Li. Lightweight Federated Graph Learning for Accelerating Classification Inference in UAV-assisted MEC Systems. IEEE Internet of Things Journal (IOTJ), 11(2): 21180-21190, 2024.(中科院1区Top期刊)
[16] Xing Chen, Lijian Yang, Zheyi Chen*, Geyong Min*, Xianghan Zheng, and Chunming Rong. Resource Allocation with Workload-Time Windows for Cloud-Based Software Services: A Deep Reinforcement Learning Approach. IEEE Transactions on Cloud Computing (TCC), 11(2): 1871-1885, 2023.(云计算顶刊,ESI热点/高被引)
[17] Jianshan Zhang, Hongqiang Zheng, Zheyi Chen*, Xing Chen*, and Geyong Min. Device Access, Sub-Channel Division, and Transmission Power Allocation for NOMA-Enabled IoT Systems. IEEE Internet of Things Journal (IOTJ), 10(19): 17047-17057, 2023.(中科院1区Top期刊)
[18] Xing Chen, Fangning Zhu, Zheyi Chen*, Geyong Min*, Xianghan Zheng, and Chunming Rong. Resource Allocation for Cloud-Based Software Services Using Prediction-Enabled Feedback Control with Reinforcement Learning. IEEE Transactions on Cloud Computing (TCC), 10(2): 1117-1129, 2022.(云计算顶刊,ESI高被引)
[19] Xing Chen, Zewei Yao, Zheyi Chen*, Geyong Min*, Xianghan Zheng, and Chunming Rong. Load Balancing for Multi-Edge Collaboration in Wireless Metropolitan Area Networks: A Two-Stage Decision-Making Approach. IEEE Internet of Things Journal (IOTJ), 10(19): 17124-17136, 2023.(中科院1区Top期刊)
[20] Zheyi Chen, Jia Hu, and Geyong Min. Learning-Based Resource Allocation in Cloud Data Center Using Advantage Actor-Critic. IEEE International Conference on Communications (ICC), 2019.(通信领域旗舰会议)
[21] Zheyi Chen*, Hongqiang Zheng, Jianshan Zhang, Xianghan Zheng, and Chunming Rong. Joint Computation Offloading and Deployment Optimization in Multi-UAV-Enabled MEC Systems. Peer-to-Peer Networking and Applications (PPNA), 15: 194-205, 2022.(CCF-C国际期刊)
[22] Zhanghui Liu, Lixian Chen, Zheyi Chen*, Yifan Huang, Jie Liang, Zhengxin Yu, and Wang Miao. Load Prediction in Edge Computing Using Deep Auto-Regressive Recurrent Networks. IEEE International Conference on Communications (ICC), 2023.(通信领域旗舰会议)
[23] Zheyi Chen, Jia Hu*, Geyong Min*, and Xing Chen. Effective Data Placement for Scientific Workflows in Mobile Edge Computing Using Genetic Particle Swarm Optimization. Concurrency and Computation: Practice and Experience (CCPE), 33(8): e5413, 2019.(CCF-C国际期刊)
福大智能边缘系统课题组(iEdge)