科研工作

天津大学宁博博士学术报告

来源:     发布日期:2017-09-08    浏览次数:

报告人:  宁博博士,天津大学

报告时间:201791514:30

报告地点:数计学院4号楼229

报告题目:Stability versions of Erdos’ theorem and Woodall’s
conjecture on cycles

 

报告人简介:宁博,西北工业大学理学博士,2011届福州大学离散数学中心硕士。20157月入职天津大学,任讲师。主要研究领域是结构图论、极值图论和图谱理论,特别是圈结构的存在性。在SCI源刊物发表(含接受)论文30余篇。现主持国家自然科学基金青年基金一项,参与面上项目一项。

 

报告摘要:

 

Erdos (1962) proved a Turan-type theorem on Hamilton cycle in terms of minimum degree

and the number of edges of a graph. Generalizing Erdos' result, Woodall (1976) conjectured that:

For a 2-connected graph G on n vertices with $\\delta(G)\\geq k$, there holds

$e(G)\\leq \\max\\{f(n,k,c),f(n,\\lfloor\\frac{2}\floor,c)\\}$ if

$c(G)=c\\leq n-1$, where $f(n,k,c):=\\binom{c-k+1}{2}+k\\cdot (n-c+k-1)$.

In this talk, we present stability versions of Erdos' theorem and Woodall's conjecture, respectively. Our result implies a proof of Woodall's conjecture and also generalizes recent theorems of Furedi, Kostochka, Verstraete (2016) and Furedi, Kostochka, Luo, Verstraete (2017+).We also give a stability version of a classical theorem of Bondy (1971/1972) on long cycles. Our methods are completely different from Furedi et al.

 

欢迎老师和研究生前往听取报告!

上一篇
下一篇